

Chapitre IX : Equations différentielles

Dans tout ce chapitre \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} .

I Equations différentielles linéaires d'ordre 1

I.1 Généralités

Soient I un intervalle de \mathbb{R} , α , β , γ trois fonctions de I dans \mathbb{K} , continues sur I. Une équation différentielle linéaire d'ordre 1, est une équation où l'inconnue est une fonction y, dérivable sur I à valeurs dans \mathbb{K} telle que

$$\forall t \in I, \qquad \alpha(t)y'(t) + \beta(t)y(t) = \gamma(t).$$
 (E)

Dans cette équation, les fonctions α , β , γ sont données et l'on cherche à déterminer la fonction y. Lorsque la fonction α ne s'annule pas sur I, l'équation (E) s'écrit alors :

$$\forall t \in I, \qquad y'(t) + \frac{\beta(t)}{\alpha(t)}y(t) = \frac{\gamma(t)}{\alpha(t)}.$$
 (E)

On dit alors que (E) est résolue en y' (bien que l'on n'ait encore rien résolu concernant les solutions) sur I.

Définition I.1

Soient I un intervalle de \mathbb{R} et a et b deux fonctions de I dans \mathbb{K} , continues sur I.

• L'équation d'inconnue y, une fonction dérivable sur I à valeurs dans \mathbb{K} , définie par

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = b(t) \tag{E}$$

est appelée

- La fonction $b: I \to \mathbb{K}$ est appelée de l'équation (E).
- A toute équation différentielle (E), on associe une équation différentielle linéaire d'ordre $1 \dots \dots$

...... définie comme étant l'équation d'inconnue y une fonction de $I \to \mathbb{K},$ dérivable sur I telle que

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = 0. \tag{E_0}$$

Remarque 1:

- 1. La première condition pour être une solution d'une équation différentielle d'ordre 1 est avant tout d'être une fonction dérivable sur l'intervalle I.
- 2. L'équation est dite **linéaire** car la dépendance dans l'équation de y et y' est linéaire (on a du y ou y' à la puissance 1). Il existe des équations différentielles (en général bien plus compliquées) où y' est donnée en fonction de y^2 (équation de Riccati) ou de $\sin(y)$ (mouvement d'un pendule) par exemple.
- 3. L'équation est dite d'ordre 1 car l'on ne considère que la dérivée première de y.
- 4. Il est usuel (même si pas très rigoureux) d'écrire la variable t pour les fonctions a et b mais de ne pas l'écrire pour les fonctions y et y'. L'équation (E) s'écrit souvent

$$y' + a(t)y = b(t). (E)$$

I.2 Equation homogène d'ordre 1

Proposition I.2

On reprend les notations de la définition I.1. L'ensemble \mathscr{S}_0 des solutions de l'équation homogène (E_0) est un espace vectoriel/vérifie les propriétés suivantes :

- L'élément nul appartient à \mathscr{S}_0 : la fonction nulle sur I est un élément de \mathscr{S}_0
- L'ensemble \mathscr{S}_0 est stable par combinaison linéaire : pour tout $(y_1, y_2) \in \mathscr{S}_0^2$ et tout $(\lambda, \mu) \in \mathbb{K}^2$, on a

Remarque 2: Notez bien que la proposition précédente n'est pas vraie si l'on considère une équation différentielle avec un second membre b non nul.

Définition I.3

• Soit $f \in \mathcal{F}(I, \mathbb{K})$ une fonction de I, un intervalle de \mathbb{R} , dans \mathbb{K} . Alors on pose

$$Vect(f) = \dots$$

Cet ensemble est appelé droite vectorielle engendrée par f.

• Soit $(f,g) \in \mathscr{F}(I,\mathbb{K})$. Alors on pose

$$Vect(f,g) = \dots$$

Cet ensemble est appelé plan vectoriel engendré par f et g.

Remarque 3:

- 1. On peut définir de la même façon des espaces vectoriels engendrés par trois, quatre, ..., n fonctions.
- 2. Montrer que chacun de ces espaces Vect(f) et Vect(f,g) est bien un espace vectoriel i.e. vérifient
 - (i) La fonction nulle appartient à ces ensembles.
 - (ii) Si u et v sont deux éléments d'un de ces ensembles et si $(\alpha, \beta) \in \mathbb{K}^2$ alors la fonction $\alpha u + \beta v$ est aussi une fonction de cet ensemble.

Théorème I.4

On reprend les notations de la définition I.1. Soit $A: I \to \mathbb{K}$ une primitive de a sur I.

.....

Autrement dit l'ensemble \mathscr{S}_0 des solutions de l'équation (E_0) est donné par :

Remarque 4:

- 1. Notez que l'hypothèse a continue implique bien l'existence d'une primitive A de a (cf chapitre précédent).
- 2. Si \tilde{A} est une autre primitive de a, on sait qu'il existe une constante $\lambda \in \mathbb{K}$ telle que $\forall t \in \mathbb{K}$, $\tilde{A}(t) = A(t) + \lambda$. Donc pour tout $C \in \mathbb{K}$,

$$\forall t \in I, \qquad C e^{-\tilde{A}(t)} = C e^{-A(t)-\lambda} = C e^{-A(t)} e^{-\lambda} = \tilde{C} e^{-A(t)},$$

avec $\tilde{C} = C e^{-\lambda}$. Ainsi on s'aperçoit que l'ensemble $\{t \mapsto C e^{-A(t)} \mid C \in \mathbb{K}\}$ ne dépend pas de la primitive choisie. D'où l'écriture concise en une droite vectoriel Vect $(t \mapsto e^{-A(t)})$.

- 3. Soit $y_0 \in \mathscr{S}_0$. Si y_0 n'est pas la fonction nulle alors $y \in \mathscr{S}_0$ si et seulement s'il existe $C \in \mathbb{K}$ telle que $y = Cy_0$. Autrement dit les éléments de \mathscr{S}_0 sont tous colinéaires. Cela rejoint l'idée que l'espace vectoriel \mathscr{S}_0 est une droite vectorielle. Un seul élément de \mathscr{S}_0 permet de déduire l'ensemble \mathscr{S}_0 .
- 4. La proposition précédente garantit notamment l'existence d'une solution non nulle et même d'une infinité de solutions.

Exemple 5 : Dans chacun des cas, résoudre sur \mathbb{R} l'équation différentielle.

1.
$$y' - 2ty = 0$$

2.
$$y' + (t^3 + 4t^2 - \sqrt{2})y = 0$$

3.
$$y' + e^t y = 0$$

I.3 Equation d'ordre 1 avec second membre

Théorème I.5

On reprend les notations de la définition I.1 et du théorème I.4. On note $\mathscr S$ l'ensemble des fonctions y solutions de l'équation (E). On suppose que $\mathscr S$ est non vide et on fixe y_p une solution de (E). Alors l'ensemble $\mathscr S$ est donné par

.....

Remarque 6:

- 1. Le théorème précédent suppose l'existence d'au moins une solution (et alors il en existe une infinité) mais nous n'avons pas encore démontré en toute généralité que $\mathscr S$ admet une solution.
- 2. On dit souvent que y_p est une solution particulière de \mathscr{S} . Ne vous y trompez pas, y_p est en réalité une solution quelconque. Il nous en faut juste une.
- 3. L'ensemble des solutions \mathscr{S} est obtenu à partir de celui de \mathscr{S}_0 « translaté » d'une fonction y_p . On dit alors que l'ensemble solution \mathscr{S} est un espace affine de direction l'espace vectoriel \mathscr{S}_0 .

Exemple 7:

- 1. Soit $(a,b) \in \mathbb{R}^2$. Déterminer l'ensemble des solutions sur \mathbb{R} de l'équation y' + ay = b.
- 2. Résoudre sur \mathbb{R} l'équation différentielle $y' + xy = x^3$.

Proposition I.6 (Principe de superposition)

Soient I un intervalle de \mathbb{R} , a, b_1 et b_2 des fonctions continues sur I. On considère les équations suivantes, d'inconnue y une fonction dérivable sur I:

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = b_1(t) \tag{E_1}$$

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = b_2(t) \tag{E_2}$$

$$\forall t \in I, \quad y'(t) + a(t)y(t) = b_1(t) + b_2(t).$$
 (E)

Soient y_1 une solution de (E_1) et y_2 une solution de (E_2) . Alors la fonction $y = y_1 + y_2$ est une solution de (E).

Démonstration. Exercice!

Exemple 8 : Résoudre sur $]0; +\infty[$ l'équation différentielle $y' - \frac{1}{x}y = x e^x + x.$

Proposition I.7

Soient I un intervalle de \mathbb{R} , a et b deux fonctions continues sur I. On suppose a à valeurs dans \mathbb{R} et b à valeurs dans \mathbb{C} . On considère les équations

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = b(t) \tag{E}$$

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = \operatorname{Re}(b(t)) \tag{E'}$$

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = \operatorname{Im}(b(t)). \tag{E''}$$

Si y est une solution de (E) alors Re(y) est une solution de (E') et Im(y) est une solution de (E'').

I.4 Recherche d'une solution particulière

On considère le cas d'une équation différentielle linéaire avec second membre :

$$\forall x \in I, \qquad y' + ay = b(x), \tag{E}$$

où $a \in \mathbb{K}$ est une constante.

• Second membre polynomiale. Si pour tout $x \in \mathbb{R}$, b(x) = P(x), avec P un polynôme de degré $n \in \mathbb{N}$:

$$\forall x \in I, \qquad y' + ay = P(x). \tag{E}$$

alors on cherche une solution y_p de (E) sous la forme d'un polynôme de degré n.

• Second membre exponential. Si pour tout $x \in \mathbb{R}$, $b(x) = e^{mx}$, avec $m \in \mathbb{K}$ et $m \neq -a$:

$$\forall x \in I, \qquad y' + ay = e^{mx} \,. \tag{E}$$

alors on cherche une solution y_p de (E) sous la forme exponentielle $x \mapsto \lambda e^{mx}, \lambda \in \mathbb{K}$.

Cas particulier. Si m=-a alors on cherche une solution y_p de (E) sous la forme exponentielle $x\mapsto x\,\mathrm{e}^{mx}$.

• Généralisation. Si pour tout $x \in \mathbb{R}$, $b(x) = P(x) e^{mx}$, avec P un polynôme de degré $n \in \mathbb{N}$ et $m \in \mathbb{K}$:

$$\forall x \in I, \qquad y' + ay = P(x) e^{mx}. \tag{E}$$

alors on cherche une solution y_p de (E) sous la forme $\begin{cases} x \mapsto Q(x) e^{mx} & \text{si } m \neq -a \\ x \mapsto xQ(x) e^{mx} & \text{si } m = -a \end{cases}$, avec $\deg(Q) = \deg(P)$.

• Second membre trigonométrique. Si pour tout $x \in \mathbb{R}$, $b(x) = \sin(mx)$ ou $b(x) = \cos(mx)$, avec $m \in \mathbb{K}$, ou bien l'on recherche directement une solution trigonométrique ou bien on transforme la fonction trigonométrique en exponentielle complexe et on utilise la proposition I.7.

Exemple 9 : Dans chacun des cas suivant, déterminer les solutions sur \mathbb{R} des équations différentielles.

1.
$$y' + 2y = e^{-x}$$

2.
$$y' + 2y = (x^2 + 1) e^{-2x}$$

I.5 Méthode de variation de la constante

Une façon générale de rechercher une solution particulière est d'appliquer la méthode de variation de la constante. Voici l'idée de la méthode :

- 1. On suppose y une solution dérivable sur I.
- 2. On pose pour tout $t \in I$, $z(t) = y(t) e^{A(t)}$, où A est une primitive de a. Autrement dit la fonction y s'écrit $y = zy_0$, où pour tout $t \in I$, $y_0(t) = e^{-A(t)}$ et donc y_0 est une solution de l'équation homogène (E_0) associée à (E).
- 3. On traduit le fait que y est solution de (E) et on en déduit une expression de la dérivée de z.
- 4. On intègre l'expression obtenue à l'étape précédente, on en déduit une formule pour z.
- 5. On conclut une expression de y.

Théorème I.8 (Méthode de variation de la constante)

Soient I un intervalle de \mathbb{R} , a et b deux fonctions de I dans \mathbb{K} continues sur I. On considère \mathscr{S} l'ensemble des solutions de l'équation différentielle linéaire d'ordre 1

$$\forall t \in I, \qquad y' + a(t)y = b(t). \tag{E}$$

On pose A une primitive de a sur I et Γ une primitive de $t \mapsto b(t) e^{A(t)}$ sur I. Alors

$$\mathscr{S} = \left\{ \begin{array}{ccc} I & \to & \mathbb{K} \\ t & \mapsto & \Gamma(t) \operatorname{e}^{-A(t)} + C \operatorname{e}^{-A(t)} \end{array} \right| C \in \mathbb{K} \right\}.$$

Remarque 10:

- 1. Le théorème précédent assure donc l'existence d'une solution (et même d'une infinité).
- 2. Vous remarquez qu'avec la méthode de variation de la constante, on ne se contente pas de trouver une seule solution mais on trouve toutes les solutions de (E).
- 3. La méthode de variation de la constante peut paraître systématique pour trouver une solution particulière. Cependant d'une part elle peut être longue, il est donc utile de ne pas louper les solutions « évidentes » pour gagner du temps de calcul, d'autre part elle nécessite de déterminer une primitive de $t \mapsto b(t) e^{A(t)}$ ce qui n'est pas toujours possible de façon explicite.

Exemple 11 : Retrouver les solutions de l'équation différentielle $y' + \frac{1}{x}y = x e^x$ sur \mathbb{R} à l'aide de la méthode de variation de la constante.

I.6 Résolution avec condition initiale

Définition I.9

Soient I un intervalle de \mathbb{R} , a et b deux fonctions continues sur I dans \mathbb{K} , $t_0 \in I$ et $y_0 \in \mathbb{K}$. On appelle **problème** de Cauchy l'équation suivante d'inconnue y une fonction de I dans \mathbb{K} dérivable sur I,

Théorème I.10

Pour tout $(t_0, y_0) \in I \times \mathbb{K}$, il existe une unique solution au problème de Cauchy.

Démonstration. Analyse/Unicité. Soit y une solution au problème de Cauchy, alors y est une solution de

$$\forall t \in I, \qquad y'(t) + a(t)y(t) = b(t). \tag{E}$$

Donc d'après le théorème I.8, il existe $C \in \mathbb{K}$ telle que

$$\forall t \in I, \qquad y(t) = \Gamma(t) e^{-A(t)} + C e^{-A(t)},$$

où A est une primitive de a et Γ une primitive de $t \mapsto b(t) e^{A(t)}$. En particulier, si $t = t_0$,

$$\Gamma(t_0) e^{-A(t_0)} + C e^{-A(t_0)} = y_0 \quad \Leftrightarrow \quad C = y_0 e^{A(t_0)} - \Gamma(t_0).$$

Ainsi une seule valeur de C est possible pour définir y ce qui prouve l'unicité. Synthèse/Existence. Posons pour tout $t \in I$,

$$y(t) = \Gamma(t) e^{-A(t)} + C_0 e^{-A(t)},$$

avec

$$C_0 = y_0 e^{A(t_0)} - \Gamma(t_0).$$

D'après le théorème I.8, on sait que y est solution de (E). Pour montrer que y est une solution du problème de Cauchy, il nous reste juste à vérifier que y $(t_0) = y_0$. Et en effet,

$$y(t_0) = \Gamma(t_0) e^{-A(t_0)} + C_0 e^{-A(t_0)}$$

$$= \Gamma(t_0) e^{-A(t_0)} + (y_0 e^{A(t_0)} - \Gamma(t_0)) e^{-A(t_0)}$$

$$= \Gamma(t_0) e^{-A(t_0)} + y_0 - \Gamma(t_0) e^{-A(t_0)}$$

$$= y_0.$$

I.7 Problème de raccord

On considère une équation différentielle linéaire d'ordre 1 non résolue en y': soient I un intervalle de \mathbb{R} , α , β , γ trois fonctions continues de I dans \mathbb{K} . On considère alors l'équation d'inconnue y une fonction dérivable sur I telle que

$$\forall t \in \mathbb{I}, \qquad \alpha(t)y'(t) + \beta(t)y(t) = \gamma(t).$$
 (E)

Supposons par exemple que I=[a;b] et que α s'annule en un unique point de $t_0\in]a;b[$:

$$\alpha(t_0) = 0$$
 et $\forall t \in]a; t_0[\cup]t_0; b[, \alpha(t) \neq 0.$

Puisque α est non nulle sur l'INTERVALLE $I_1 =]a; t_0[$ ainsi que sur l'INTERVALLE $I_2 =]t_0; b[$, l'équation (E) implique les deux équations différentielles suivantes.

$$\forall t \in I_1, \qquad y'(t) + \frac{\beta(t)}{\alpha(t)}y(t) = \frac{\gamma(t)}{\alpha(t)}$$
(E₁)

$$\forall t \in I_2, \qquad y'(t) + \frac{\beta(t)}{\alpha(t)}y(t) = \frac{\gamma(t)}{\alpha(t)}$$
 (E₂)

Dans une démarche d'analyse/synthèse, pour déterminer les solutions de (E), on fixe y une solution de (E), on en déduit que y est une solution de (E_1) sur I_1 et une solution de (E_2) sur I_2 . On en déduit une écriture de y sur I_1 (dont l'existence est assurée par le théorème I.5) et une écriture de y sur I_2 . ATTENTION! Les constantes qui apparaissent dans la résolution sur I_1 ne sont pas les mêmes a priori que les constantes qui apparaissent dans la résolution sur I_2 . Pour trouver une solution qui soit valable sur I tout entier, il faut regarder s'il est possible de jouer sur les constantes précédentes pour obtenir une fonction y qui soit dérivable sur I tout entier notamment il faut qu'elle soit continue en t_0 donc que

$$\lim_{\substack{t \to t_0 \\ t < t_0}} y(t) = \lim_{\substack{t \to t_0 \\ t > t_0}} y(t).$$

De même il faut que la limite du taux d'accroissement coïncide à gauche et à droite.

Exemple 12 : Résoudre sur \mathbb{R} l'équation différentielle

$$(1-x)y'-y=x.$$

Exemple 13 : Résoudre sur \mathbb{R} l'équation différentielle

$$xy' - 3y = x^4.$$

II Equations différentielles d'ordre 2 à coefficients constants

II.1 Définition

Définition II.1

Soient I un intervalle de \mathbb{R} , $(a,b,c) \in \mathbb{K}^3$ tel que $a \neq 0$ et $d:I \to \mathbb{K}$ une fonction continue sur I. On appelle **équation différentielle linéaire d'ordre 2 à coefficients constants** l'équation d'inconnue une fonction y de I dans \mathbb{K} , deux fois dérivable sur I et telle que

On lui associe son **équation différentielle homogène** ou sans second membre qui est l'équation d'inconnue y une fonction de I dans \mathbb{K} , deux fois dérivable sur I et telle que

$$\ldots \ldots (E_0)$$

Remarque 14:

- 1. Dans cette équation, le second membre est noté d.
- 2. Puisque $a \neq 0$, il est toujours possible d'obtenir l'équation résolue en y'' associé :

$$\forall t \in I, \qquad y''(t) + \frac{b}{a}y'(t) + \frac{c}{a}y(t) = \frac{d(t)}{a},$$

et aucun problème de raccord ne se posera dans le cas d'une équation différentielle d'ordre 2 à coefficients constants.

3. L'équation différentielle est **d'ordre 2** car elle met en relation la fonction, sa dérivée première et sa dérivée seconde.

II.2 Equations homogènes d'ordre 2

Proposition II.2

On reprend les notations de la définition II.1 et on note \mathscr{S}_0 l'ensemble des solutions de l'équation homogène (E_0) . L'ensemble \mathscr{S}_0 est un espace vectoriel :

- La fonction nulle est un élément de \mathcal{S}_0 .
- L'espace \mathscr{S}_0 est stable par combinaison linéaire : pour tout $(y_1, y_2) \in \mathscr{S}_0^2$, et tout $(\lambda, \mu) \in \mathbb{K}^2$, on a

$$\lambda y_1 + \mu y_2 \in \mathscr{S}_0.$$

П

Démonstration. On procède exactement de la même façon que pour la proposition I.2. Il est clair que la fonction nulle est solution de (E_0) (mais pas de (E)). Montrons que \mathscr{S}_0 est stable par combinaison linéaire. Soient $(\lambda, \mu) \in \mathbb{K}^2$ et $(y_1, y_2) \in \mathscr{S}_0^2$. Alors la fonction $y = \lambda y_1 + \mu y_2$ est deux fois dérivable sur I et

$$\forall t \in I, y'(t) = \lambda y_1'(t) + \mu y_2'(t) y''(t) = \lambda y_1''(t) + \mu y_2''(t).$$

Donc

$$\forall t \in I, \qquad ay''(t) + by'(t) + c = a\left(\lambda y_1''(t) + \mu y_2''(t)\right) + b\left(\lambda y_1'(t) + \mu y_2'(t)\right) + c\left(\lambda y_1(t) + \mu y_2(t)\right)$$

$$= a\lambda y_1''(t) + a\mu y_2''(t) + b\lambda y_1'(t) + b\mu y_2'(t) + c\lambda y_1(t) + c\mu y_2(t)$$

$$= \lambda \left(ay_1''(t) + by_1'(t) + cy_1(t)\right) + \mu \left(ay_2''(t) + by_2'(t) + cy_2(t)\right)$$

Puisque $y_1 \in \mathscr{S}_0$ et $y_2 \in \mathscr{S}_0$, on a pour tout $t \in \mathbb{R}$, $ay''(t) + by'(t) + cy(t) = \lambda \times 0 + \mu \times 0 = 0$ et donc $y \in \mathscr{S}_0$.

Définition II.3

On reprend les notations de la définition II.1. On appelle **équation caractéristique** associée à (E_0) l'équation du second degré

 $\ldots \ldots \ldots \ldots \ldots \ldots (E_c)$

d'inconnu le complexe $r \in \mathbb{C}$.

Lemme II.4

On reprend les notations de la définition II.1. Soit $r \in \mathbb{C}$. La fonction $y : \begin{cases} \mathbb{R} & \to \mathbb{C}, \\ t & \mapsto e^{rt} \end{cases}$ est solution de l'équation homogène (E_0) si et seulement si $r \in \mathbb{C}$ est solution de l'équation caractéristique (E_c) associée.

Théorème II.5 (Solutions complexes de (E_0))

On reprend les notations de la définition II.1 et on note $\mathscr{S}_0(\mathbb{C})$ l'ensemble des solutions à valeurs dans \mathbb{C} de l'équation (E_0) .

• Si l'équation caractéristique (E_c) admet deux racines distinctes $(r_1, r_2) \in \mathbb{C}^2$, $r_1 \neq r_2$, alors l'ensemble $\mathscr{S}_0(\mathbb{C})$ est donné par

.....

• Si l'équation caractéristique (E_c) admet une racine double $r_0 \in \mathbb{C}$, alors l'ensemble $\mathscr{S}_0(\mathbb{C})$ est donné par

Remarque 15 : Cette fois-ci, l'ensemble des solutions est construit ou *engendré* par la combinaison de deux solutions non-colinéaires et forme donc un *plan vectoriel*.

Exemple 16 : Dans chacun des cas, déterminer l'ensemble des solutions complexes de l'équation différentielle.

1. y'' + 3y' - 4y = 0

2. y'' + y' + y = 0

3. y'' + (1-i)y' + (4+7i)y = 0

4. y'' + 2y' + y = 0.

Théorème II.6 (Solutions réelles de (E_0))

On reprend les notations de la définition II.1. On suppose que les constantes a,b et c sont **réelles** et on note $\mathscr{S}_0(\mathbb{R})$ l'ensemble des solutions à valeurs dans \mathbb{R} de l'équation (E_0) . On note $\Delta = b^2 - 4ac$ le discriminant de l'équation caractéristique

$$ar^2 + br + c = 0. (E_c)$$

• Si $\Delta > 0$, on note r_1 et r_2 les deux racines réelles de (E_c) . Alors les solutions réelles de (E_0) sont données par

.....

.....

• Si $\Delta = 0$, on note r_0 la solution double de (E_c) . Alors les solutions réelles de (E_0) sont données par

.....

.....

• Si $\Delta < 0$, on note $\alpha + i\beta$ et $\alpha - i\beta$ les deux solution de (E_c) , c'est-à-dire $\alpha = \frac{-b}{2a}$ et $\beta = \frac{\sqrt{|\Delta|}}{2a}$. Alors les solutions réelles de (E_0) sont données par

.....

.....

II.3 Equations d'ordre 2 avec second membre

Théorème II.7

On reprend les notations de la définition II.1 et on note \mathscr{S}_0 l'ensemble des solutions de (E_0) et \mathscr{S} l'ensemble des solutions de (E). Si (E) admet une solution et si y_p est une solution de (E), alors

.....

Proposition II.8 (Principe de superposition)

Soient I un intervalle de \mathbb{R} , a, b et c trois complexes fixés et d_1 et d_2 deux fonctions continues sur I. On considère les équations suivantes, d'inconnue y une fonction deux fois dérivable sur I:

$$\forall t \in I, \qquad ay''(t) + by'(t) + cy(t) = b_1(t) \tag{E_1}$$

$$\forall t \in I, \qquad ay''(t) + by'(t) + cy(t) = b_2(t) \tag{E_2}$$

$$\forall t \in I, \qquad ay''(t) + by'(t) + cy(t) = b_1(t) + b_2(t). \tag{E}$$

Soient y_1 une solution de (E_1) et y_2 une solution de (E_2) . Alors la fonction $y = y_1 + y_2$ est une solution de (E).

Proposition II.9

Soient I un intervalle de \mathbb{R} et a, b, c trois **réels**. Si $d: I \to \mathbb{C}$ une fonction continue sur I et si $y: I \to \mathbb{C}$ est une fonction deux fois dérivable telle que

$$\forall t \in I, \quad ay''(t) + by'(t) + cy(t) = d(t),$$

alors la fonction $y_1 = \text{Re}(y): I \to \mathbb{R}$ est solution de l'équation différentielle

$$\forall t \in I, \quad ay_1''(t) + by_1'(t) + cy_1(t) = \text{Re}(d)(t),$$

et la fonction $y_2 = \operatorname{Im}(y) : I \to \mathbb{R}$ est solution de l'équation différentielle

$$\forall t \in I, \quad ay_2''(t) + by_2'(t) + cy_2(t) = \text{Im}(d)(t),$$

II.4 Recherche d'une solution particulière

Soient I un intervalle de \mathbb{R} , $(a, b, c) \in \mathbb{K}^3$, $a \neq 0$. On s'intéresse à l'équation différentielle d'ordre 2 d'inconnue y une fonction deux fois dérivable sur I:

$$\forall x \in I, \qquad ay'' + by' + cy = P(x) e^{mx}, \tag{E}$$

où P est un polynôme et $m \in \mathbb{K}$. Alors on cherche une solution de (E) sous la forme

- $x \mapsto Q(x) e^{mx}$ si m n'est pas une racine de l'équation caractéristique (E_c)
- $x \mapsto xQ(x) e^{mx}$ si m est une racine simple de l'équation caractéristique (E_c)
- $x \mapsto x^2 Q(x) e^{mx}$ si m est une racine double de l'équation caractéristique (E_c)

avec Q un polynôme de même degré que P.

A nouveau dans le cas d'une fonction trigonométrique au second membre on cherchera ou bien une solution trigonométrique évidente ou l'on transformera la fonction en exponentielle.

Exemple 17: Résoudre dans \mathbb{R} les équations suivantes.

1.
$$y'' + y' + y = e^t + t$$

2.
$$y'' - 4y' + 3y = (2t + 1)e^{t}$$

3.
$$y'' - 2y' + y = (t - 1)e^t$$

4.
$$y'' - 4y' + 3y = t e^t \cos(t)$$

II.5 Résolution avec condition initiale

Définition II.10

Soient I un intervalle de \mathbb{R} , $(a,b,c) \in \mathbb{K}^3$, $a \neq 0$, $d:I \to \mathbb{K}$, une fonction continue sur I, $t_0 \in I$ et $(y_0,y_1) \in \mathbb{K}^2$. On appelle **problème de Cauchy** l'équation suivante d'inconnue y une fonction de I dans \mathbb{K} deux fois dérivable sur I,

$$(\mathscr{P}) : \begin{cases} ay''(t) + by'(t) + cy(t) = d(t), & \forall t \in I, \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

Théorème II.11 (admis)

Pour tout $(t_0, y_0, y_1) \in I \times \mathbb{K}^2$, le problème de Cauchy admet une unique solution.

Remarque 18: Notez que toute fonction de \mathscr{S}_0 est construite à partir de deux constantes (cf théorème II.5). On dira que c'est un espace vectoriel de dimension 2. L'ensemble des solutions \mathscr{S} sera par suite un espace affine de dimension 2. Cela rejoint au moins intuitivement le fait qu'il faille deux conditions initiales : position $y(t_0)$ et vitesse $y(t_1)$ pour obtenir l'unicité de la solution.

III Prochainement... Espaces vectoriels

Définition III.1

Soient E un ensemble, $n \in \mathbb{N}^*$ et $x, u_1, u_2, \dots, u_n \in E$ des éléments de E. On dit que x est **une combinaison** linéaire de $u_1, \dots u_n$ s'il existe $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ tel que

.....

Pseudo-définition III.2

Soit E un ensemble. On dit que E est un espace vectoriel s'il est stable par combinaisons linéaires.

Remarque 19:

- Les éléments de \mathbb{K} (des réels ou des complexes) sont appelés des scalaires.
- Les éléments de E sont appelés des **vecteurs** même si ce ne sont pas des vecteurs au sens géométrique que vous avez appris au lycée, si E est un ensemble de fonctions, les vecteurs sont donc des fonctions. Ils peuvent être aussi des polynômes, des complexes, des matrices etc.

Exemple 20 : classique à connaître.

- R est un R-espace vectoriel.
- \mathbb{R}^2 et \mathbb{R}^3 sont des \mathbb{R} -espaces vectoriels.
- Pour tout $n \in \mathbb{N}^*$, l'ensemble des n-uplet \mathbb{K}^n est un \mathbb{K} -espace vectoriel.
- Pour tout $(n,m) \in (\mathbb{N}^*)^2$, l'ensemble des matrices $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -espace vectoriel.
- \mathbb{C} peut être vu comme un \mathbb{C} -espace vectoriel mais aussi en tant qu'ensemble de couples de réels comme un \mathbb{R} -espace vectoriel.
- L'ensemble des suites $\mathbb{K}^{\mathbb{N}}$ est un \mathbb{K} -espace vectoriel.
- Pour I un intervalle de \mathbb{R} , l'ensemble $\mathscr{F}(I,\mathbb{K})$ est un \mathbb{K} -espace vectoriel.

Exemple 21:

1. Dans \mathbb{R}^3 , tout vecteur $(x_1, x_2, x_3) \in \mathbb{R}^3$ est une combinaison linéaire des vecteurs $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$. En effet :

$$(x_1, x_2, x_3) = x_1(1, 0, 0) + x_2(0, 1, 0) + x_3(0, 0, 1) = x_1e_1 + x_2e_2 + x_3e_3.$$

- 2. Tout complexe $z = a + ib \in \mathbb{C}$ peut s'écrire comme combinaison linéaire des complexes 1 et $i: z = a \cdot 1 + b \cdot i$.
- 3. Dans $\mathscr{F}(\mathbb{R},\mathbb{R})$, la fonction sh est combinaison linéaire de $f_1 x \mapsto e^x$ et $f_2 : x \mapsto e^{-x} : sh = \frac{1}{2}f_1 \frac{1}{2}f_2$.

Proposition III.3 (Caractérisation des sous-espaces vectoriels)

Soient E un \mathbb{K} -espace vectoriel et F un ensemble. F est un sous-espace vectoriel de E si et seulement si F vérifie les trois propositions suivantes :

1.	٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

2.

3. F est stable par combinaisons linéaires :

.....

Exemple 22:

- 1. Soit I un intervalle de \mathbb{R} . L'ensemble des fonctions continues $\mathscr{C}(I,\mathbb{K})$ est un sous-espace vectoriel de $\mathscr{F}(I,\mathbb{K})$.
- 2. Soit I un intervalle de \mathbb{R} . Pour tout $n \in \mathbb{N}^*$, $\mathscr{C}^n(I,\mathbb{K})$ est un sous-espace vectoriel de $\mathscr{F}(I,\mathbb{K})$.
- 3. L'ensemble des solutions d'une équation différentielle linéaire **homogène** d'ordre 1 (respectivement 2) est un sous-espace vectoriel de l'ensemble des fonctions dérivables (respectivement deux fois dérivables) lui-même étant un sous-espace vectoriel de l'ensemble des fonctions.
- 4. L'ensemble des solutions d'un système **homogène** de p équations à n inconnues est un sous-espace vectoriel de \mathbb{R}^n .

BERNOULLI Jakob (francisée en Jacques) (Bâle 1654 - Bâle 1705) fut le premier d'une lignée de mathématiciens suisses d'origine anversoise. Sur les conseils de son père, Jacques Bernoulli commença par étudier la théologie avant de se tourner rapidement vers l'astronomie, les mathématiques et la physique, contre l'avis de son père. Il voyagea en France, en Angleterre et en Flandres, y rencontra les scientifiques de renom de l'époque puis revint en Suisse en 1687 et y développa les nombreux travaux qu'on lui connaît. Il fut en relation avec Leibniz et contribua à l'essor du calcul infinitésimal. Il sut notamment l'appliquer à l'étude des courbes. Il fut le premier à utiliser les coordonnées polaires et sut les dériver. Il travailla sur les coniques, les problèmes isopérimétriques, les séries (cf second semestre pour nous) et les probabilités.

Une équation de Bernoulli est une équation différentielle du type $y' + a(x)y + b(x)y^{\alpha} = 0$ qui fut résolu par Leibniz. L'inégalité de Bernoulli est celle qui pour tout x > -1 et tout n > 1 affirme que $(1+x)^n > 1 + nx$. Fasciné par la spirale logarithmique qu'il surnommait spira mirabilis, il souhaita que l'on en grave une sur sa tombe accompagné de Eadem mutata resurgo ce qui signifie je renais changé en moi-même. Mais le graveur, mauvais mathématicien, dessina une spirale d'Archimède...

Tout le monde connaît l'aspect hautain de la fonction $x \mapsto e^x$ qui se moque de ses compères $x \mapsto x$, $x \mapsto \ln(x)$, $x \mapsto \cos(x)$ ou $x \mapsto \sin(x)$. Mais la vengeance des fonctions trigonométriques est moins connue. Voici ce qui se passa. Les fonctions $x \mapsto e^x$, $x \mapsto \sin(x)$ et $x \mapsto \cos(x)$ jouaient régulièrement au poker, mais la fonction exponentielle, mauvaise joueuse, dès qu'elle sentait la partie en sa défaveur lâchait son gros chien $\frac{d}{dx}$ sur sinus et cosinus « Attaque, désurdéics! Attaque! ». Les deux fonctions pour ne pas perdre la face, en particulier le cosinus qui avait tendance à devenir négatif dans ce cas de figure, devaient fuir à toute vitesse. Plus exactement sinus sautait sur le dos de cosinus et les deux fonctions prenait alors la tangente devant $x \mapsto e^x$ qui se Gaussait bien d'eux... Mais les fonctions trigonométriques sont bornées et ne désespéraient pas de pouvoir prendre leur revanche. Après une longue période les deux fonctions furent en phase (ce qui n'est pas courant) et livrèrent une grosse cage à $x \mapsto e^x$ avec marqué dessus : « voici un compagnon pour désurdéics ». Avec une curiosité croissante (et rapidement), $x \mapsto e^x$ ouvrit la cage et découvrit un gros chien très similaire à désurdéics sauf que ce dernier portait un collier où son nom apparaissait : désurdéigrec. La fonction $x \mapsto e^x$ eu juste le temps de pousser un soupir prophétique « oh non c'est trop nul! ». Moralité : il ne faut jamais laisser dériver son orgueil car nous sommes tous la constante d'un opérateur.